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Tricontinuous structure in a homopolymer —homopolymer —random-copolymer ternary mixture
quenched under the tricritical point
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We proposed a dynamical method to simulate the time change in the domain structure for a
homopolymer-homopolymer-random-copolymer ternary mixture quenched under its tricritical point.
The system studied underwent a phase separation into tricontinuous domain structure. The growth of

the domain structure obeys a ¢t ~!/3

phase separation.

PACS number(s): 64.70.Ja, 64.60.Cn, 83.80.Es

It is well known that the phase transition processes of
binary mixtures quenched into their unstable region pro-
gress via spinodal decomposition (SD). The dynamics of
the SD processes of binary mixtures have been investigat-
ed theoretically and experimentally in the field of small
molecules, metallic alloys, and inorganic glasses [1,2].
Many authors reported experimental [3,4], theoretical
[5-8], and computational [9-11] studies of the dynamics
of the SD processes of binary polymer blends as well as
other binary mixtures. Most investigations of polymer
blends focused on the universality in the dynamics of SD
processes in polymer blends, such as the validity of the
scaling postulate [12] and the dynamical scaling law [13].
Recently, Leibler [14] and Broseta and Fredrickson [15]
investigated the phase diagrams of a ternary mixture of
polymer A, polymer B and a random copolymer com-
posed of 4 and B comonomers. One component of the
investigations of the phase diagram of the
homopolymer—homopolymer-random-copolymer ternary
mixture is that the ternary mixture has a tricritical point
and separates into three phases under the tricritical point
[15].

The aim of the present paper is to propose a method
for the phase separation processes of the ternary mixtures
quenched under the tricritical point, and to show the
computational results with the dynamical model.

Leibler and Broseta and Fredrickson approximated the
free-energy density per monomer by the Flory-Huggins
lattice theory to investigate the phase diagram of the ter-
nary mixture. Here we employ the Flory-Huggins—de
Gennes (FHD) theory [5] to simulate the phase separa-
tion process of the ternary mixtures, where the nonlocal
term is added to the Flory-Huggins theory.

We consider the system A -B-R where A and B denote
different homopolymer species, and R denotes a random
copolymer consisting of equal volume fractions of 4 and
B monomers. If the volume fraction of 4, B, and R, at a
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power law and the dynamical scaling law is valid in the late stage of

point r and a time ¢ are defined by ¢ ,(r,?), ¢5(r,2), and
¢ (1,1), respectively, the incompressibility condition can
be expressed by

¢ (1, 0)+dp(r, ) +dp(r,)=1, 1)

and only two of the three volume fractions can be recog-
nized as independent parameters in the system. Here
¢ 4(r,t) and ¢p(r,t) are selected as independent parame-
ters. From continuity equations and Onsager theory for
A and B, we obtain the following basic equation to de-
scribe the time evolution of ¢ ,(r,¢) and ¢5(r,2):

9¢ 4(r,1)

i%‘t-=AAAV2(I—‘A“/~LR)+AABV2(HB —Hr) @)
and

Odp(r,t)

_"‘at—‘=ABAV2(,U'A THR )+ABBV2(,U'B —HR) 3)

where A, and p; (k=A or B) are the Onsager
coefficient and the chemical potential of the k polymer,
respectively. In Egs. (2) and (3), we neglect the thermal
noise [16] and the hydrodynamic interaction [17-19].

The chemical potential of k£ can be obtained from the
total free-energy functional F{¢ ,,¢5,4z} for the system.

F{¢A’¢B’¢R] is given by {20]
F{¢ 4,050z} /kpgT
_ %4 (] Pr

1 +— R
N, ng 4 N, Ingz + Ny Ing g

+xb 405+ iX(d 4 Tdp)dR

2
a
(Vo )? (4)
k =§,B,R 36¢k ¢k

where kjp is the Boltzmann constant, T is the absolute
temperature, ¥ the Flory-Huggins interaction parameter
for the pair of A and B monomers; a the statistical seg-
ment length, and N, the polymerization index of k. Here
we assume that the statistical segment length of monomer
A is identical to that of monomer B. The standard
definition of u, gives
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SF
uy=F + —_—
g j=A2,B,R 8¢j

(8, —8,) (5)

where §; is the Kronecker delta.
Under the incompressibility condition, the Onsager
coefficients of the system are expressed by [11]

A =AL 0+t (AgytAge)™h, (6)
App=Agd +(A 4o+ Ag) !, (7)
and
AZb=Apl=— A;3+Agg+ﬂ— , @)
AAOABO

where A is the bare mobility of k given by [5]
Awo=Dy Ny ¢y 9)

with D, being the self-diffusion coefficient of k.

We have numerically integrated Egs. (2) and (3) on a
128 X 128 lattice with a time step of 0.00005 s and a lat-
tice width of 1.0 nm. The periodic boundary conditions
are imposed on each box side. In order to reduce the
computation time, we replaced 1/¢, in Eq. (4) and ¢, in
Eq. (9) by 1/{¢, ) and { ¢, ), respectively, where (¢, ) is
the space average ¢, at t =0. The initial configurations
of the fields of ¢ 4 and ¢ are given according to Gauss-
ian random numbers with (¢ ,)=(¢z)=0.17. The pa-
rameters chosen here are N ,=Nz=1000, N =500,
a=0.7 nm, D,=Dyp=2000 nm?/s, and Dy =8000
nm?/s. According to Broseta and Fredrickson, the sys-
tem with the parameters listed above has the tricritical
point at Y=0.01, so that we used y=0.0104. We have
run five independent computations with different initial
configurations up to 2500 s and averaged the results. To
investigate the growth of the domain structures quantita-
tively, we calculate the circularly averaged scattering
structure factor I, (q,t) of the field ¢, (hereafter designat-
ed the “partial structure factor”) as a function of time ¢,
where I} (g,t) is defined by

—_1 pom
Ii(g,0)=—— fo I(g,0du (10)

where p is the azimuthal angle of wave vector q with
respect to the x axis, and ¢ is the magnitude of the wave
vector.

Figure 1 shows domain structures corresponding to the
fields of ¢ 4, ¢p, and ¢,. The ¢ 4-, d5-, and ¢g-rich re-
gions form continuous structures (“tricontinuous struc-
tures”), and grow with time. The patterns of ¢ 4 and ¢p
seem to grow with self-similarity, which is similar to
those of binary mixtures. The distribution of ¢z shows
that the random copolymer tends to accumulate at inter-
faces between A- and B-rich regions. This accumulation
is similar to the accumulation of a surfactant in binary
mixtures [21]. However, there is a fundamental
difference between the two systems: the A -r-B-rich re-
gion grows with time because we performed the simula-
tion under the tricritical point, whereas the surfactant-
rich region in binary mixtures does not grow with time
[21].

In Fig. 2, the first moments q,,(z) of I, (g,t) are plotted
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FIG. 1. Snapshot pictures at ¢t =50, 100, and 250 s. Black,
gray, and white parts correspond to 8¢ > 8¢ 4, and 8¢y > 6dp,
8¢ 4>8¢pr and 8¢ 4 > 8¢y, and 8¢y > 8¢, and 8¢y >Edy re-
gions, respectively, where O8¢r=c¢r—(dr)+0.04, 8¢,
=¢,—(b,), and O8dy=¢p—{(dy). Each picture has
128X 128 meshes, with a lattice size of 1 nm.
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FIG. 2. Time changes in the characteristic wave numbers
d 41> 981, and gg; in a double logarithmic scale.
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as a function of ¢, where g, (¢) is defined by

[ ali(g,1)dg

t)=—F—— . (11)
[1utat)dg

q1x(

Time changes in g, ,(?) and gq,5(¢) are superimposed
completely because of .the symmetry features, such that
the polymerization indices and initial volume fractions of
A and B are identical. The decreases of g, ,(¢) and
g,5(t) obey the power law ¢~ !/* at the long time limit
covered in our computation, identical with the results of
computer simulations for the binary mixture without hy-
drodynamic interactions [22]. Although the absolute
value of gx(#) is different from those of g, ,(¢#) and
q15(t), q g (1) is approximately given by the same power
law 7' at the long time limit. This indicates that
A -r-B-rich phase grows with time as well as the other
two phases. These time changes are very different from
that in the characteristic wave number g,,(?) of the 4 -B -
surfactant, where g,,(t) of the A -B-surfactant system
corresponds to g, 4(t) or g,3(¢) in the A—-B—A -r-B sys-
tem. For the A -B-surfactant system, the accumulated
surfactant reduces the interfacial tension between A- and
B-rich phases so that the growth rate of the domains
structures deviates from ¢ 173 [21].

We investigated whether the dynamical scaling law is
valid or not for the time change in the three-phase
separated domain structure of the ternary system, by cal-
culating the scaled partial structure factor S;(g,t) of the
k component defined by

Sk(x,t)zq%k(t)fk(q,t) s (12)

with the reduced wave number
x=q/q(t) . (13)

The scaled partial structure factors of each component
are plotted as function of x in the late stage in Fig. 3.
S 4(x,t) and Sg(x,t) are well superimposed and indepen-
dent of time, indicating that the dynamical scaling law is
valid for the time changes in the 4 and B-rich domain
structures. It is noted that a shoulder at x =2, due to the
domain being locally packed alternating lamellae [10,23],
can be observed in S ,(x,?) and Sg(x,?), as in the scaled
structure factor in symmetric binary mixtures [10,23].
However, the position of the shoulder for symmetric
binary mixtures is reported to be at x =3 [10,23]. This
difference arises from the difference in the volume frac-
tions of the A- or B-rich domain in the ternary and
binary mixtures: In the case of the symmetric binary
mixture, the volume fractions of two coexisting domains
become identical, which causes the shoulder at x =2 to
disappear. This disappearance is simply because the form
factor from the single lamellae reaches a minimum at
x =2. On the other hand, in the case of the ternary mix-
ture, such a disappearance does not occur. For the
(A-B)— A —B (the system composed of 4-B blockcopoly-
mer, homopolymer A4, and homopolymer B) system, the
shoulder at x =3 is more enhanced than that of the 4 —-B
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FIG. 3. Scaled structure factors plotted as a function of the
reduced wave number x for A4, B, and R in the time region from
t =100-200 s.

system, because the blockcopolymer A -B enlarges the
persistent length of the local lamellae structure in the sys-
tem [21]. The asymptotic behavior of S ,(x,t) and
Sp(x,t) at x <1 obeys x*, which agrees with the experi-
mental [23], theoretical [24,25], and computational [19]
results for symmetric binary mixtures. The power law
exponent m in the scaled partial structure factors of
Si(x,t)~x "™ (k= A, B, and R) at x > 1 is much larger
than that of 3 expected for the Porod law in two dimen-
sional space, because the interface thickness is still thick
[22].

Sg(x,t) obtained at various times in the late stage are
also superimposed, and the time change in the random
copolymer domains retains the dynamical scaling law.
Sk (x,t) is much broader than S ,(x,?) and Sz(x,?), and
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the shoulder at x =2 in Sy (x,¢) is less distinct. The slope
of Sg(x,t) at x <1 is much smaller than 4. These two
effects may be interpreted as arising from a large distribu-
tion of the domain spacing of the random copolymer
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phase, compared with those of the 4- and B-rich regions
shown in Fig. 1. Similarly to S ,(x,t) and Sz(x,t) the
slope m of Si(x,t) at the high-x region is larger than 3,
because of the effects of the interface thickness.
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